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SUMMARY

The last major international -meeting on “Transonic Aerodynamics” was
the ‘ﬁwmposium Transsonicum” held in Aachen in 1962. Since that time
there have been considerable developments in this field, for both

-military cnd.civilian applications, in-a number of NATO countries and

it was felt that sufficient information had been accumulated to justify
8 Specialiéts’ Meeting on this topic It was' planned to hold this
meeting on. 18-20 September in Parib at the Ecole Nationsle Supérieure de:
1’ Aéronautique.

Members of the Program Committee were:

M.R.Legendre, France (Chairman), Prof.S.Erdmann, Netherlands,
Dr.D.Ktchemann, U.K., Dr.J.Lukasiewicz, U:S.A., Prof.A.Naumann,
Germany, and Prof.B.H. Goethert, U.S.A. (Co- opted member).

~These proceedings contain a collection of the papers presented at
this meeting, ‘the purpose of which was to review and discuss the practical
methods available for the study of flows around airplanes flying at
subsonic speeds at which local supersonic regions appear.

The collection of papers emphasizes various calculation methods,
experimental studies on profiles, with or without viscosity effects,
and wing-body interference, to present a good -cross-section of the
state-of-the-art and-to provide guidance for further research and
development in this field./

Contributions have come from five NATO countries.

533.6.011.3

iid




TR

e

A i

AV b T fxan

KAk

e

RESUME

Depuis 1962, ol s’ était tenu & Aix-la-Chapelle le “Symposium
Transsonicum”, sucune réunion internationale importante n’ avait été
consacrée & 1’ Aérodynamique Transsonique. Pourtant, depuis cette
date, des réalisations considérables, intéressant & la fois les activités
civiles et militaires, avaient été accomplies dans ce domaine par un
certain nombre de pays de 1’ OTAN et 1’on estima que la somme d’ informations
accumuldes & ce sujet justifiait 1’ organisation d'une Réunion de
Spécialistes. C est ainsi que prit naissance 1’idée de la réunion qui
s' est déroulde & Paris, & 1’ Ecole Nationale Supérieure de 1’ Aeronautique
du 18 au 20 Septembre 1968.

Le Comité du Programme chargé de sa réalisation se composait des
membres suivants:

M.R.Legendre, France (Président), Prof.S.Erdmann, Pays-Bas,
Dr.D.Kuchemann, Grande-Bretagne; Dr.J.Lukasiewicz, U.S.A.,

Prof, A.Naumann, Allemagne et le Prof.B.H.Goethert, U.S.A. (adnis
par cooptation).

Ce compte-rendu rassemble les exposés présentés & cette réunion,
dont 1’objectif était de passer en revue et d’ examiner les méthodes
pratiques dont on dispose & 1'heure actuelle pour étudier les écoulements
autour d’avions volant aux vitesses subsoniques ol apparaissent des
régions supersoniques locales.

Ces exposés, fruit du travail de cinq pays de 1’ OTAN, sont consacrés
en particulier aux diverses méthodes de calcul, aux études expérimentales
sur les profils, avec ou sans effets de viscosité, et aux interférences
voilure-fuselage. Ils donnent un bon apergu de 1'état actuel de la
techuologie dans ce domaine et contiennent des donndes permettant
d'orienter les recherches et développements futurs.

Cing pays de 1’ OTAN ont donné leur contribution.

iv
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Transonic shock-free flow, fact or fiotion ?

by G,Y, Nieuwland and B,M. Spee

National Aerospacs laboratory NIR, Amsterdam, Netherlands
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It has to be realired that such terms as physical significance and siability, used in
the transonic controversy, have different connotations from the engineering, mathematical
and physical point of view,

The oconcluzions that have besn obtained from an experimental study on guaasi-elliptiocal
asrofoil sections may be said to constitute the rslevance of transcnic potential flow in the
sngineering ssnse, These conclusions are 3
«~ the sgreemsnt beiween experiment and theory can in principle be made arbitrarily good by

eliminating modsl imperfeotions and boundary layer effecisj
~ the shock-free design condition is ambedded in, and can be resched in a stable manner
from, the neighbouring conditions where shook wzves are present.,

The only legitimate way to disocuss the physical significance of potential flow
solutions from the mathematical point of view is to exhibit suoh solutions as the limit of
solutions of the unsteady compressible Navier~Stokes equations for Re w—w-o0 4 t—= 00 ,
Moravetz's non-existence theorems for transonic potential flow have therefore very limiteg
physiocal content, they are rather concerned with the computability of suoh flows,

From a physical point of view, arguments for the instability of transonic potential
flows against time despendent disturbances have been advanced by Kuo and others, These
argunents disregard a stabiliring effect on acoustic wave propagation in the flow,
essentially dependent on its two-dimensional nature, This stadbilitiy mechaniem for unsteady
disturbances in a shook-free transonic fiow is demonstrated,

It can be olaimed, in spite of earlier oriticism, that the use of potential flow
theory in the iransomic region is, both mathematioally and physically, as respsctable, as
it is anywhere else in aerodynamics.
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Notation

propagation speed of small disturbance
stagnation value of o

determinant of rate of strain tensor v g
Mach muber q/c

ocurvilinear coordinate normal to atreamline
flow velooity

flow velooity veoctor

unit veotor normal to wave front

curvilinear cocrdinate along stresmline

unit vector tangential to wave front

wave front inclination with respect to velocity vector
specific baats ratio
flow angle

wave front local rate of turning




Transonic shock-free flow, fact o fiotion ?

3
by G.Y. Mieuwland X/ and B,M, Spee x)

National Aserospace Laboratory NLR, Amsterdan,
Netherlands,

1 Historical introduction,

In his preface to the Symposium Transsonicum (Aachen 1962, ref.1), Oswatitsch
explains that " ,,, Those concerned with the transcnic coniroversy are split in two camps
with different points of view. Rigorous proofs which could settle the ocontroversy have not
yot bsen found",

There is not much point in attempting a documented reconstruction of the two positions
involved, dut it is probably fair to state the most widely held one as follows ¢
1) The basic assertion was, that expsrimentally only transonic flows involving shock waves

were found, at least when & well developed supersonic region was present, say for
M max > 1.1,

2) T%ggretically, exanples of iransonic potential flows can be constructed, exhibiting
shock free recompression from the supersonic flow region back to subsonic flow speed,
However, if 1) was true, one had to suppose that these asolutions wers unstable in some
sense,

3) For this instability, two complementary explanations were given, The first explanation
wes sought in the mathematical fact, that a transonic potsential flow solution, if it
exists for some particular aerofoil shape, can be blown up by an arbitrarily small
perturbation of the part of the contour bounding the supersonioc region {Busemann, ref,2;
Morawetz, ref.3). Secondly, the argument was advanced that the development in time of a
perturbed transonioc potential flow around a fixed profile would be unstadle, as
upstream running perturbations would increase exponentiaslly with time in the supersonic
recompression region of the flow (Kuo, ref.d4j Werner, ref,5). Both these arguments
conveyed the suggestion of the collapse of & potential flow solution into the
supposedly standard, stable, transonic flow solution with a shock.

Against this often rather agressively held position, the defenses put up by the other
camp were, one feels, rather weaky as it now turns out, perhaps unnecessarily so. While the
opponents gradually left thoir trenches to partake in more fashionable activities than the
at that time rather out-moded tr-nsonic aerodynamics, the whole picture was changed by
Pearcey and his group at the NPL. Having first experimentally sorted out the highly complex
viscous phenomena in the transonic speed range (see ref.6), he next evolved the concept of
the "peaky" pressure distribution" (ref.7), and showed that in fact, & for all practical
purposes shook free transonic flow could experimentally be realised,

The first opportunity of systematically confronting transonic potential theory and
experiment for aerofoil flows, came with the development of the theory of quasi-elliptical
aerofoils at NIR (refs. 8, 9),

As a survey of the existing axperimental information has very recently been given
{ref, 1), we will here restrict to pointing out the main facts. The purpose of the present
papor is to demonstrate that the fundamental theorems on the mathematical '"non~existence" of
transonic potential flo. due to Busemenn and Morawetz, together with some recently discoversd
facts about the time dependent stability aspects, and the experimental data now available,
provide on the level of present day knowledge a consistent physical picture of transonic flow
in the high subsonic speed range, In our opinion this means that at any rate the old
"t{ransonic controversy" can be regarded as definitively settled.

x)

Senior Research Fngineer, Aerodynamics Division,




2 ZExperimental faots,

Although now ssveral exauples of theoretical solutions for the transonic potential
flow around lifting quazi-elliptical serofcilsare available, the experimental evidence
is at present entirely based on symmetrical aerofoils, The reason is simply that these
were muoh earlier available, This is, bhowever, not at all a serious limitation, as long as
the aim is a basic investigation of the stability of the shock-frees supersonic region.

As the transonic effeots are purely local, one would not expect to miss anything worthwile

this way, From an experimsntal point of view, the symmetrical flow has important berefits,

The absence of large wall interfersence and boundary-laysr effects on oirculation makes the

interpretation of the experimental resulis esasier and more raliable,

Twoevamples will be discussed. The aecofoil shape, theoretical design pressure
distribution and shape of the aonic line are given in fig.?a, b, Theso examples wasre taken
from the collection of ref,11, and are designated as (0,1-0,675~1.6) and (0,115~0.75-1,2).
The first one is a 16 % thiok aerofoil with design Mach number Moo = C,745, having a peaky
pressure distridbution with a maximum local Mach number M o 1,47, The other is 11 % thick
and has & peaky pressure distribution with a sescondary expansion just in front of the
sugtion peuk, the design Meoh number being Moo = 0,806 and the maximum local Mach number
M - 1-0260

max Fig.2a, b shows the comparison between theory and experiment at the design condition
for the 16 % thick aerofoil, In fig. 2a the pressure is plotted against the chordwise
distance measured from the leading edge, in fig, 2b against the aerofoil ordinate normal to
the ochord, The experimantal design Maoch number is somewhat higher (0,002) than the
theoretioal value, in accordance with the estimated blockage effect in the wind tunnel,

The disorepancies beiveen experiment and theory are due to model imperfections and
boundary layer effects, The slight underexpansion in the supersonic regicn, leading to a
very weak shock wave, is caussed mainly by a small laminar seperation bubble at 8 % ohord,
free transition being at 12 %,

Fig.3 shows & shadowgraph pioture of the flow around the 16 % thick erofoil at the
design condition, with the theoretical shape of the sonic line drawn in. The shadowgraphs
were obtained with a short duration spark exposure that arrests upstream-moving disturbdances,
The distrudbances form sharp pressure fronts at these speeds,

The appaarance of laminar separation bubbles is a conssquence of ithe reolatively low
Reynolds i mber (2,10%) of the teasts. These saparations would undoubiedly disappear at
full-scalo Reynolds numbers. The only way to avoid separation effects in the wind tunnel is
by fixing the transition point of the boundary iayer, This, however, has an unfavourable
sffeot on the agreement between theory and experiment, The transition stirip generally
disturbs the flow by genersting a weak shock wave,

A 8t1ll better agreement betwesen theory and experiment has been found for the 11 %
thick aerofoil, as shown in fig, 4a, b for & Mach number whioch is consideradly higher than
the design Mach number, The reason for the very good agrsement in this particular case is
the absence of separation, For Mach numbers closs to the design value there is a relatively
large separation bubble in the laminar boundary layer, At slightly higher Mach numbers,
however, this separation bubble dieappears, The agreement leaves litile to be desired. On
the basis of pressure plois and optiocal observations, the flow is really shock-free,

Having thus settled the design case, the next question of interest ie the senaitivity
of these flows, more generally their off-design behaviour, Fig, 5 demonsirates the
development of shooks both below and above the design point for the 11 % thick aerofoil., The
relevant shadowgraphs ars given in fig, 6a, b and o, These data show the shock-free design
oondition embedded in a family of flows involving shock waves, Similar results have been
obtained for small variations in angle of incidence.

From these data, and also from the response of the flow to things like vransition
strips, one can get the impression of & great sensitivity of these flows, In a cense, of
course, this is true, Yot in another sense, the flows are rather insensitive, In fig, 7 the
dependence of the drag oocefficient on Mach number is given for the 16 % thick aerofoil,
which shows that although there are shocks in off-design oonditlions, the wave drag remains
negligible in a rather large interval, In fact, this 16 % thick aerofoil has a higher
drag rise Mach number than the 12 % thiok NACA 0012 aerofoil.

The following conoclusions may said to constitute "physical significance" of the
transonio potential flow solutions in the engineering sense,

1. The differences betwoen expsriment and theory are dus to modsl imperfections and
boundary layer effeots., The resulte suggest that the theoretical potential flow can be
approached arbitrarily olose if these effects are sliminated.

2, The shock-free design condition is embedded in, and can be reached in & stable manner
from; the neighbouring oonditions involving shocks, In a usefully large interval of
corditions, the wave drag remains negligibdle.




3 Mathematical problems.

Having reviewed this experimental material, it is perhaps useful to spend a few
remarks on the interpretation of the famous Moraweiz theorems, which have been regarded as
providing the key to a physical understanding of these flows,

Very roughly, the content of one of these theorems is as follows, Consider a given
tranaonic potential flow solution describing a profile flow, for instance & quasi-alliptisal
asrofoil flow, This solution can also be regarded as the molution of a boundary valus prodiem
for the equations for plane compressible potential flow, with the given aerofoil shape and
thu free siream as boundary conditions. Next, perturb the prafile contour by an arbdbiirarily
small amount in the supersonic region, and Morawetz proves that now no solution t> the
btoundary value problen exists, In contrast to the subsonio flos case, a itransonic potsntial
flow is "not continuously dependent on the boundary data",

From the physical point of view, we nust side with Busemann et al,, and oconclude - on
the principle that nature does not jump - that the boundary value problem in potential flow
theory is not a physically adequate model for a real transonic flow. In other words, the
basic assumption of strict irrotationality makes the transonic flow too rigid a fabric to be
smoothed around an arbitrary shape, But we must own the other side, that we cannot
logioally reverse this conclusion in the sense that if we try to model a given theorstiocal
solution in a wind tunnel, the resulting type of flow is necessarily drastiocally differsnt,
The results of the laast section show that this is not the ocass,

If, howsver, we had to discuss the physical significance of potential flow solutions
in tle striot mathematical sense, as opposed to the engineering sense of "adequate"
agreenent between theory and experiment, we would have to study viscous compressible flow
solutions in the limit Re—= 00 , and also the unsteady variant of thess in the limit t —eo0

The problem would be tp investigate under what oonditious these solutions would have a
potential flow as the limiting case, Thia problem is far bsyond the power of the availadble
rmathematical methods, even for incompressible flowj thurefore the physical significance of
potential flow solutions at any flow speod is at the mouent in the strict sense, an entirely
open protlenm,

If, for a moment, we would be allowed to veuture into the realm of soience fiction, and
speculate what at some distant future date the rnysical significance of transonio potential
flow solutions might look like, we would get sumothing as follows, In accordance with
Morawetz'! theorsms, ws would expoot that in gunsral, no transonic irrotational flow limit
would exist for a viscous solution as Re—e 00 , except for a very speoial sst of ismolated
"admissible" contours, which would admit & pctential flow limit at one particular Mach
nunber each, If then wa oould prove, that fo: such Mach numbers the discrepancy between a
viscous flow solution and a transonic potantial flow solution ocould be made arbitrarily
snall for Re sufficiently large and an aerofoil shape suffiociently near an "admissible" ons,
we would have obtained a mathematioal conoejt of physiocal signifioance whioh would cover
todays experimental data,

Returning to fact rather than ficticn, we nust conclude that the import of Morawetz's
theoren is computationul rather than physicai, as {t states the impossibility of
constructing transonic flow solutionm for a tiven serofoil by posing a direct boundary value
problem in the physical plane for the equatiuns for potential flow, Accordingly, the
potential flywe around quasi-elliptioal asro'oils wero mathematically defined in a quite
different, inverse wayj alternatively, modern developments of numerioal methods for the
direct problem do not make use of the equati{uns for potential flow but inolude simulated
viscosity terms, In conoclusion we might say that the prodlem of the physical significance
of transonic potential flow sclutions {s in the mathecatioal sense sssentially an open
problem, but not (at the moment) a oontroveruial one,




4 Unsteady aspects,

& second line of argument against ths physical existence of shock free transonic flows
was based on the suppcsed unstability of these flows as & result of uneteady waves moving
upstirean into the supersonic region, This argument was developed by Kuo (ref.4), and also
mentioned by Holder (ref.6)., In its briefest outline, the argument was that such wavss, when
superimposed on a steady shock free basic flow could move upstream as long as the local
steady flow speed was subsonic, but as they entered the region of supersonic local flow
epeeds would necessarily come %o a standstill, coslesce, and interact with the basic flow
until a stationary shook wave was formed,

It is clear from the experiments discussed in section 2 that this does not, in fact,
happen, but we can also give a simple physical explanation why it does not,

Let us first perform a numerical, or rather graphical, experiment, We take a
transonic quasi-elliptical aerofoil flow, and at time + = O, generate an acoustic pulse at
the trailing edge. Knowing the velocities in the outer flow field, we can easily consiruct
by Buygens' principle, the development in time of the wave front moving looally at a sonic
ralative speed, The picture we get in this way is sketched in fig.8. What happens is that
the wave front, in the gradient field of the basic flow, turns over in suoh a way, that on
entering the supsrsonic region, the wave front is everywhere inclined at an angle with the
local flow veloocity larger than the local characteristio angle., This means that the
component of the flow velooity normal to the wave front is everywhere smaller than the
sonic value, and so the wave front moves locally as if in a subsonic flow, Far from coming
to a standstill, the wave moves upstream with respect to a stationary observer, at an even
faster rate in the supersonic region than in the subsonic part downstream,

Now this is only one particular case, and we can ask whether this property holds
generally, A simples analysis shows that the answer is in the affermative, Ist E be the
local velooity veotor, ¢ the looal velocity of sound, and T and T unit veotors tangential
and normal to the wave front., The local rate of turning w of the wave Iront can be
expressed as

W wgrado .t +t. Vg, 1 (1)

If now we express the rate of strain tensor xra in a local reference frame along and
normal to the streamline, we have

Vas ) (2)

with q and e as local velocity and flow angle, In irrotational and isentropic flow we have
the equations for continuity and irrotationality in this frame

2
(1-M)qa+q9n-0 (3)
I = B = 0
The local propagation speed of the wave is
¢! = c (1 - Msinex ), (4)

vhere o< 18 the angle of the wave front with respect to the local velocity vector, and the
local spend of sound is conneoted with q by @

Si °2 002

R = HE (5)
Now if a wavo front would be stationary, we would have ¢! = 0,w = O, The first of thease
relations means, of course; that the wave froni is &aligned along a characteristic, To sese
whather in that case also wW = O ia possible, we substitute the relation ¢! = 0 in eq.(1),
and using eas (2), (3 ), (4), (5) we obtain i

qge 3 =Y 2 s 2
w-—-;-;f(z- ] M)(1-'q'§: M"'1)' (6)




If we have L > 0, this means that the wave front is rotating into the "safe" divecticn,
i.0, the interval of wave angles in which the local velocity componant normal to the wave
front is subsonic (fig.9). Now i¢ follows that ¢ > 0 obtains if

93 £0, (78)
2

M<3—-4_-—? , (70)
9 1

bor—~and -——. 7
CONMY 7 (70)

Condition (7a) expresses convexity of the aerofoil in the supsrsonic region, (7%) says
that the local Mach number should be smaller than 1.58 for Y = 1,4, and expreasion (7o)
ueans that the Jacobian of the hodograph transformation

UV
TSt <o,

and this is always the oase in the class of analytic hodograph flows(ref,§,ipp.ChAnd we
could at most have J = O at an isclated point of the contour of a general aerofoil,

We have then, that the waves are locally always turning into the eafe direotion, and
some further reflection {ref,12) shows this to mean, that all unsteady waves must traverse
the supersonic region in a finite time, This turning effect of disturbance waves was
disregarded in Kuo's semi-one-dimensional instability arguments, and ie in fact the reason
why these two~dimensional flows bebave differently from the stability point of view than
one-dimensional diffuser floxs do.

We would like to add one remark on condition (7b), laitone (ref,1) has conjectursd,
that M =« 2 (3 - y’)‘g would be the maximum possible local speed in a transonic flow, It
is easy to see (ref.12) that a transonic flow with a higher local Mach number is unstable
against unsteady disturbances, and so these cannot physically be realised. On the other
hand we have as yet not been able to prove that such flows cannot be found, slthough for
quasi-elliptical aerofoils the record stands today not higher than Mmax = 1,54,

5 Conclusion,

Shock~free iransonic flow s fact or fiction ? The answer depends obviously on one's
definition of what is "shock~free", Probably nobody would care to deny, that in every real
transonic flow, shock phenomena could be detected if scrutinised closely enough.

From the engineer's point of view, however, much more interesting is the fact, that
agreement tetween potential flow theory and experiment can be obtained within all practical
limits, if the experiment is conducted with sufficient care, Moreover, the flow changes into
off-design conditions in an entirely smooth and stable way, and the wave drag remains
negligible in a promisingly large interval of neighbouring conditions,

From the mathematician's point of view, the problem would be to decide what sense
transonic potential flow solutions ocould be regarded as an asymptotic limit of solutions of
the equations for viscous compressible flow. Unfortunately, it locks as if this probdlem
will remainopen for some considerable time.

From the physicist's point of view, the essential difference tetiween the stability
behaviour of transonic one-dimensional, and a two~dimensional flow hae been clarified,

80 that we now can understand how a "shock free" flow staye alive,
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Lax-Wendroff Difference Scheme Applied to the Transonic Airfoil Problem
Robert E. Singleton

Lockheed-Georgia Company, Marietta, Georgia




Sumsaxry

A pumerical method is developed for solving the uneteady-flow equations for the flow of a moncon-
ducting, inviscid ges around an srbitrary profils. The governing equations are differenced by a
two-step, Lax-Wendroff scheme, and steady-atate solutions are sought in the limit of long times.
Bonndary conditions are numerically prescribed and the Lax-Wendroff method is shown to give near-
steady-state, subgonic Mach number distributions after a few hundred time steps. The method gave
resulis for transonic flow with s shock wave for the one case considered. This matter is being
further investigeted with a more accurately given airfoil. The procedurs requires lsrge computer
memory and long computer runs.
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Lax-Wandroff Differencs Scheme Applied to the Transonic Airfoil Problen+
Robert E. Singleton”

Lockheed-Georgia Ccmpany, Marietta, Georgia

Introduction-

The mathematical complexities associated with the transonic pctential flow over arbitrary pro-
files are well known; however, the usefulnees of & successful method continues to inspire
researchers to look for methods of solution. One heretofore urnexplored possibility is to cir-
cunvent some of the mathematical complexities by bringing the tremsndous capabilities of mcdern
high-speed computers to bear on the problem. This paper attempts to accomplish this task by
developing & numerical procedure for the trsnsonic pctential flow over a non-l1ifting, arbitrary
profile to be solved on a high-speed computer,

The governing equations describing the conssrvation of mass, momentum and energy for the
ungsteady flow of an inviscid, nonconducting ges are written in divergence-free form. By retain-
ing the unsteady terms, these partial differential equations remein hyperbolic, even vhen the
flow is of a mixed type containing both supersonic and subsonic rsgions. The steady-state solu-
tion is sought asymptotically as time approsches infinity. This procedure is also desirsble
because the shock-wave relations are contained as a speoial case of the governiog equations,
provided weak solutions are allowsd. Consequently, the shock wave ias considercd as part of the
solution and not as & predetermined interior b?ugdaxy. To mention a few references, Godunov

et al, 1). Buratein(a), and Bohachevsky et al. 3 htv’ all developed this procedure for two-
dimeusional, supersonic, blunt-body flows. Thopmen 4) has treated the viscous supersonic flow
over & flat plate using this nppr?gsh. Burstein(?) has studied supersonic flow in & constricted
channel, and Thommen and D'Attore apply this technique to three-dimensional supersonic flow
fields. Quite recently, Yoshihnrl(7) reported sucoessful results for the transonic flow with
shock waves over & circular-arc profile,

Apparently the application of unsteady numerical methods for generating steady-state solutions
is qui‘e wide, and this paper is concerned with the application of this technique to blunt,
twoqdimensitg’l non-lifting profilea, Tre gecmetry of the profile is chosen to be one of
Nieuwland's isentropic compreasion profiles found by using the hodograph method. The govern-
ing equations are differenced by a modified tyo-atep Lax-Wendroff difference acheme which ie
quite similar to the scheme used by Thommen(4 . The boundary conditicns at the airfoil surface
are satisfied by a multiple reflection technique, and the boundary conditions at the outer edge
of the mesh were adjusted to allow unsteady effects to pass through.

The following sections of this paper describs first the actual formulation of the equations and
techniques to be used. Secondly, the preliminary results are given and the indicated modifica-
tions to the program are discussed. The next section deals with the final results obteined and
the final section gives the conclusions from this research.

Foraulation ¢f the Method

The coord{ tes for the chosen airfoil section are given to the nearest one thousandth by
Nisuwland who also gave the Mach number distribution over this airfoil, found by using the
hodograph method. A Cartesian coordinate system iz used, with all lengths made dimensionless
with the airfoil chord length., The front stagnation point of the airfoil is located at x = 3.8,
y = 3.0. The calculation grid is distributed in the ares 1 & x & 7.6, 3.0 % y & 4,96, Since
the airfoil is symmetric and non-~lifting, only the upper surface of the airfoil is counsidered,
Thus, the calculation grid extends 1,96 chord lengths normal to the airfoil and 2.8 chord
lengths in front of and behind the airfoil., Although the choice of mesh sizs is & difficult
decision to make prior to the calculations, it was decided to letdx « 0,06 for 1 3 x = 7,6,

ay » 0,04 for 3.0 Sy = 3,08, oy = 0,06 for 3.08 Sy £ 3,20, and 8y = 0,08 for 3.20 S y % 4,96,
This initial choice for the grid has 2,997 points. The Courant-Friedrichs-Levy condition for
stability as derived from linearized analysis givem a guide for establishing the time step.

It is eaay to show that if

N~

é..t.: & Me [-|+‘—'-‘Mz}
a ~ E
1+ Minax !
where O = Ax or 8y, Mg,y = waximum local Mach number, = f{reestream Mach number, then the

Courant-Friedrichs-lavy condition ia certainly satisfied. Recognizing that this requiresent
for stability can serve only as a guide to nonlinear problems, a 4t of ,008 was chosen such
that the above condition would be generously satisfied for reasonable values of Mg, , Koays ¥
and 8,

*This paper resultsd from work sponsored by Aerospace Rasearch Laboratories, O0ffice of Aerospace
Research, United States Air Force under Contract AF 33(615)-5397.

*
Scientiet, Lockheed Georgia Research Ladoratory; Lscturer, School of Aerospace Engineering,
Georgia Institute of Technology.
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The governing equations of motion are next considered by letting ¢ = chord length of airfoil,
‘ w gas density, u’, v/ « gas velooity componsnts, E’ = internal plus kinetic snergiss per
- o' w n' . ?’v’. Then by defining dimensionless variables

X = cx, Y"- cy, m’ 2 ?“U..m ’ n' = fgumn U! = L)QU- ¥'= U.\.'

unit volume, m
r

‘ ] ’ z ’ c
F:?QU:F' ?:fmg’ E-;?”UQE‘t-.-UQt'

the conservation of mass, zowentum, and ensrgy for an inviscid, noncorducting gas can be
writien

W =z F£ 4 G

whers the subscript denotes differentiation and W, F, and G are vectors defined by

rFoA - I o n 7
g -m
5.5 wo —nm
m 12"?' GIE+F $ 3
W= 5 F = -mn A A N R
n P z o z ¢ .
. -1Em+$_£_\_m3+mn" v EN L g n® + nm?
L PoETE £

These partial, nonlinear, differential equations are differenced by the two-step Lax-Wendroff
method to obtain a second-order acc?r’to difference scheme, This scheme is2 similar to those
differsnce schenes given by Thomment4) and Burstein(2) and is given below. Let VV:-=VV(t+kAt
%#mx,j+iA]) , then )

I

K K K X K K
LT ; k K at F, .-F. G. +G . . -G, .-
Wies,j * 3w Wizl,j) i +9::‘(—U' LA A ok G‘im-')
i T X YT Vi
* X k K K "
ke g k K G fey G; F . V- -
Wipas "E(Wi,fw&.j:.) S LTI ot (o * B B - )
R Yis™ Y Ko =%
F\<+'§ K+ K+ 3 ke g
:ﬂ s ow. e oaat R R o Lvy W
") ’ Rior = Rimy e J},, .

The physioal boundary conditions sre that uniform flow conditions exist far from the airfoil,
and the normal velooity on the airfoil is zero. However, since the grid system is finite and
tae flovw field is unsteady, the boundary conditions around the outer edge of the meah systen
are not well defined, Along the incoming boundary, x = 1, 3,0 Sy % 4,96, the flov is speci-
fied as uuiform, freestream flov. Although this specification of the boundary condition does
not allow for unsteady sffects, results of the calculation showed that only very small distur-
bances reeched the forwsrd boundary, and these small disturbances apparsnily csused no problems.

Along the upper boundary, 1 £ x £ 7.6, y = 4,96, it was first specified that m o 1, and the
other thres variables wers detsrmined by backward linear interpolaticn in the y-direction. It
was thought that, in this manner, the freestreax pressure would bs maintained along the upper
boundary. However, the results of several long-time runs indicated that unstsady effacts were
not getiting through the upper boundary but were propagating back into the flow field near the
airfoil and csusing a divergence there, By specifying & backward linear interpolation in the
y-direction on m also, this problem vas elimineted. The boundary conditions on the downstrean
boundary x = 7.6, 3.0 £y 5 4,96 were aet by backwerd linear interpolation in the x-directiom
on sll variables, The line of symwetry was specif{ied by symmetrically reflsoting prm snd B
and sutisyazmetriocally reflecting n across the line 1 % x £ 7.6, y = 3.0.

The application of boundary conditions along general curved surfaces is always a difficult
problen in numeriocal anslysis, The curved airfoll surface of intereast hore is no exception,
but considerable effort was exerted to devise & suitable schome based on the reflection prin-
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ciple. To illustrate the technique, a mesh point which liss outside the sirfoil but with a
neighboring mesh point, either aax or by avay, lying inside the airfoil is considersd. The
current valis of the vactor W at the outside point is denoted W,, and likewise the current
value of the vector W at the inside point is denoted W;, The line joining the inside and cut-
side pointy cuts the airfoil surface at & uniqus point where the slops iz dY/dx. The dis-
tance from this point on the airfoil surface to the outside mesh point is denoted by Ly and
the distsace {rom this point to the inside mesh point is denoted by Ly. ‘the W; is determined
as & functicn of W, by requiricg thet the linear interpolation for the velocity normal to the
airfoil surtace at the point of intersesiion on the airfoil surface be zero. The valusz for
the velocity tangential to the sirfoil surface &t the intersestion point on the sirfoil as
well a3 ¢ and E ars taken ss being the same as the corresponding values st the ocutside point.
Thess conditions are satistied by esetiing

I 0 0 °
L, gavy? ay Ly
R i I:(dx) 3?(‘* T:) 0
o~ Cavian L+ (dY/dx)? W
W, = Y °
L dY\2 N
. %;(l + ti)_ 37) - %37 0
2
L+ (3Y/ax) [+ (aY/dny
0 0 0 ‘
) ]

This technique requires the calculation of the airfoil slope, dY/dx , st the intersection
point., At firat,